Scheme's Equality Operators:

(= a b) compares numbers and is unreliable for other
comparisons.

(equal? a b) compares structures:
(equal? '(2 3) (cdr '(1 2 3) )) => #t

but (equal? 2.5 (/ 10 4)) => #f

eq? and eqv? compare memory locations rather than
structures.

(eg? a b) and (eqv? a b) both return #t if a and b are lists
stored at the same location.

If a and b are numbers
(eqv? ab)=>(=ab)
(eql? a b) is implementation-dependent.



(eqv? (/10 3) (/ 20 6)) => #t, since eqv? is the same as = for
numbers.

(eq? (/ 10 3) (/ 20 6)) => #f in Dr. Racket

Moral:
e Use = for numeric comparisons
e Use equal? if you want to know if two lists are
structurally identical.
 Use eqv? if you want to know if two lists are stored at
the same location.
 Use eq? if you are only comparing atoms.



What does this function do? You can assume it will be called
with arguments for vl and v2 that are lists.

(define A (lambda (v1 v2)
(cond
[(null? v1) v2]
[else (cons (car v1) (A (cdr v1) v2))])))



Examples on flat lists: we'll write these in class
lat = list of atoms

(same? latl lat2) returns #t if the lats have the same atoms in
the same order

The rest of these aren't especially about equality

(rev lat) reverses lat.

(remove-numbers lat) removes all of the numbers from lat

(remove-stuff pred lat) removes any element from lat that
satisfies pred.

(remover pred) returns a procedure that takes a lat and
removes elements that satisfy pred



